Non-Fermi liquids induced by U(1) gauge
field interactions: a functional
renormalization group analysis

Thomas Sheerin*
HKU-UCAS Young Physicists Symposium

22" August 2024
Engineering and
Physical Sciences
Research Council

*tps3@st-andrews.ac.uk

University of

St Andrews

QM-CDT

1@(9‘@”




Acknowledgements

Acknowledgements

Engineering and
(NS Physical Sciences
Bernd Braunecker Chris Hooley (MPI-PKS Research Council

(University of St Andrews) Dresden)

\_'_I

Supervisors




Outline

Outline

1. Introduction
* Biases and guesswork in modelling of non-Fermi liquids.
* Possible remedy: symmetry-constraints. The Reizer instability.

2. The renormalization group for NFLs
* Brief introduction to the renormalization group.
* Functional RG: how to handle Landau-damping consistently.

3. Symmetries in the functional renormalization group
* (Modified) Ward-Takahashi identities.
e Qur effective action, and constraints on the RG flow.

4. RG Fixed Point

* Unconstrained vs constrained flow.

5. Discussion and summary



Outline

Outline

1. Introduction
* Biases and guesswork in modelling of non-Fermi liquids.
* Possible remedy: symmetry-constraints. The Reizer instability.

2. The renormalization group for NFLs
* Brief introduction to the renormalization group.
* Functional RG: how to handle Landau-damping consistently.

3. Symmetries in the functional renormalization group
* (Modified) Ward-Takahashi identities.
e Qur effective action, and constraints on the RG flow.

4. RG Fixed Point

* Unconstrained vs constrained flow.

5. Discussion and summary



1. Introduction

1. Introduction

* Developing consistent theories of non-Fermi liquids (NFLs) in two spatial dimensions
remains a key challenge to condensed matter physics.

= Hertz-Millis theory is useful for some universality classes in 2-D, but fails in many
important cases [1,2].

= Various other approaches exist (Yukawa-SYK [3], QMC [4], etc) but only give insight
into certain classes of problems.

* Long-term goal: systematic understanding of the low-energy theory of these important
cases.

[1] Abanov & Chubukov, PRL 93, 255702 (2004) [2] Thier & Metzner, PRB 84, 155133 (2011)
[3] Patel, Guo, Esterlis & Sachdev, Science 381, 790 (2023) [4] Xu, Sun, Schattner, Berg & Meng, PRX 7, 031058 (2017)
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 Why is it so hard?

= Breakdown of quasiparticle picture — little known about form of low-energy
effective theory, or what the fermions do at criticality.

nk .— Fermigas

Increasing Landau quasiparticles
interactions/

correlations

/Hybrid excitations?

K|
kp

= Strong interactions/correlations in 2-D — failure of “usual” methods (Hubbard-
Stratonovich transformation [1,2], 1/N-expansion [5]).

[1] Abanov & Chubukov, PRL 93, 255702 (2004) [2] Thier & Metzner, PRB 84, 155133 (2011)
[5] Lee, PRB 80, 165102 (2009)
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* As aresult, modelling procedures often include biases and uncontrolled approximations
(e.g. Hertz-Millis theory assumes Fermi-liquid form for fermion propagator [6], holography
assumes AdS/CFT correspondence and postulates effective field theory [7], etc).

— loss of predictive power.

» Partial remedy: constrain modelling using exact (nonperturbative) identities that survive
renormalization, e.g. constraints from ‘t Hooft anomalies and|(gauge) symmetries.

(also c.f. Zhengyan Shi’s talk on Tuesday)

[6] Hertz, PRB 14, 1165 (1976) [7] Sachdev, J. Stat. Mech. (2010) P11022
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* Gauge symmetries are implemented through exact relations between correlation
functions, called Ward-Takahashi identities

— good for constraining modelling-procedures/Ansatzes.

» Simplest example: U(1) gauge field interacting with circular Fermi surface. Could be
electromagnetic field, or emergent gauge field, as in spin-liquids.

M. Vojta, Racah Institute of Physics
colloquium, 16/11/2020
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* Well-known that the magnetic vector potential A is unscreened by the particle-hole
continuum — long-range, singular interactions between electrons — destabilizes the Fermi
liquid at (very) low energies (“Reizer instability” [8]).

* Previous approaches have largely been perturbative, and not paid close attention to
symmetry-constraints [9,10]

— use functional renormalization group augmented by Ward-Takahashi identities.

[8] Reizer, PRB 40, 11571 (1989) [9] Holder & Metzner, PRB 92, 041112(R) (2015)
[10] Mandal, PRR 2, 043277 (2020)
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* Main obstacle/ challenge: reproduce Landau-damping while preserving gauge
symmetry.

_ \ Decay-time 7 ~ —
Bosonic vrlq|
fluctuations — Inverse propagator changes from
0% + c?|q|? - Q% + c?|q|* + ¢
vrlq|
so O~ |q|3,
e —

or more generally
Z
T 0 ~ |q| b’ Zp >1

lql

 Turns out to be difficult!
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Project goals

1. Non-perturbatively study the Reizer instability, correctly taking account of
gauge symmetry.

2. Include Landau-damping in a consistent way.

3. Assess the extent to which enforcing Ward-Takahashi identities changes the
properties of the low-energy theory.



Outline

11

Outline

1. Introduction
* Biases and guesswork in modelling of non-Fermi liquids.

* Possible remedy: symmetry-constraints. The Reizer instability.

2. The renormalization group for NFLs
* Brief introduction to the renormalization group.
* Functional RG: how to handle Landau-damping consistently.

3. Symmetries in the functional renormalization group
* (Modified) Ward-Takahashi identities.
e Qur effective action, and constraints on the RG flow.

4. RG Fixed Point

* Unconstrained vs constrained flow.

5. Discussion and summary



2. RG for NFLs 12

2. The renormalization group for NFLs

* The renormalization group (RG), as applied to condensed matter, is a tool for finding the
effective, low-energy theory of a given lattice-model.

* There are many implementations. For translationally-invariant systems: momentum-
shell (Wilsonian) RG. Consider bosonic field ¢(K), with UV cutoff k_:

y
High-energy modes, ¢ Partition function Z =

— fDq5< Do e~Slo< d>]
\\ Lower energy, ¢ [ Do eS¢l
o
X

— effective action S’ for ¢
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* Set ¢ = 1 + dt — differential change in coupling constants, dA; = RG “flow equations”:

dA;
d_tl — Fl'(/llr /12) )

: A1 A .
* Flowsin A;-space generate T~ Critical

phase diagrams. Phase 1 ( Point
Yi\//
. . dA;
Fixed points (E = 0) are N \
either stable (phase) or /\\\
unstable (critical point).
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* Problems with “normal” RG as applied to NFLs:

a) Perturbative: conventional schemes (like “Shankar RG” [11]) compute [-functions
up to a certain loop-order, i.e. rely on small couplings.

Q Q
Qg Qa : 4+
Q Q
\ ) ’ €23 K+Q o 24 Qs K+Q'0.> 2
W =K
= Ko 3T O LK
K
\R Q1 Qo Q3 K@ Q2 Qq K Qo2
Q4 Qo (a) (b) o) Ve,
]

28 75 BCS
— bad for NFLs occurring at O (1) couplings.

[11] Shankar, Rev. Mod. Phys. 66, 129 (1994)
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b)

Incompatible momentum-scalings:

Low-energy fermions live at |k| = kg, bosons at q = 0:

Fermions
A ky

IAmomentum

/.
\ AN .-~ /Fermi-
NS T surface
Ve

B

Scale towards
k| = kp

Bosons

/

| |
| |
\ /

/
\ Amome;yfum

'
\\ e
~N—___--

Scale towards
q==0
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c) Flawed description of Landau-damping:

Hertz-Millis-like theories: integrate out the particle-hole bubble to generate Landau-
damping:

A(Gy 1) (Q,q) = = C—+ -

1-loop

Bad, as low-energy degrees of freedom are integrated out too early, giving non-
local action.

Wilsonian RG with bosons & fermions: action is local at all scales, but no Landau-
damping! (z;, = 1 throughout [12])

[12] Fitzpatrick, Kachru, Kaplan & Raghu, PRB 88, 125116 (2013)
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Functional Renormalization Group

* Functional RG (fRG) is well suited to NFLs.

* Here, flow is parametrized by scale A, with A = 0 being the low-energy limit. We use

cutoff-functions to regulate IR divergences, e.g. electron propagator:
¥ = 0(lw| — A) (“hard”)

Grlw, k) = x(A,w, k)Gr(w, k), e.g.: T Wl t A2

Low energy-
modes cut off
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* This gives scale-dependence to the generating functionals

— flow-equation for effective action = 1-loop-exact flows for correlation functions,

44

(Renormalized) Boson  Fermion Green’s function

Green’s function Coupling
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(1)2

w?+A?

* Our approach [13,14]: y(A, w,K) =
cutoff function for bosons). Benefits:

for fermion propagator (+ some simple

a) A =frequency cutoff: doesn’t suppress small-momentum particle-hole
excitations [15]. Also resolves the problem that low-energy fermions & bosons
live at different points in momentum space: they both live at zero frequency.

[13] Maier & Strack, PRB 93, 165114 (2016) [14] Trott & Hooley, PRB 98, 201113(R) (2018) [15] Honerkamp & Salmhofer, PRB 64, 184516 (2001)
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b) “Soft” cutoff-function: “sees” low-energy degrees of freedom early in flow
but suppresses |w| < A - Landau-damping develops gradually during flow.

T X

Decreasin|
A

Uy

w (arb. units)
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* How do we find z, ,¢? In the scaling-limit, convert frequencies w, {1 = A, momenta
K| — kp = AYZ7, |q| - AY/%,

E.g. fully renormalized fermion propagator:

w2 1
w2 + A2 iA,w — Aw([k| — kr)

At criticality, on-shell:

AA "o~ AT AL/ s (7 = —A 9rlog A, )
- 1
Z f—
/ 1 T nw -+ nk

Similar for z,,.
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3. Symmetries in the fRG

* In the absence of scale-dependence, (gauge) symmetries are implemented in field
theory through Ward-Takahashi identities (WTlIs). These are equivalent to invariance of

the effective action under gauge-transformation.
» Example: Euclidean action for Fermi-surface coupled to U(1) gauge field:

S = Sf}o + Sb,O + Sbf,3 + Sbf,4 ) W|th

Spo = [ 90) (=i -+ (K] = ki) 00
1 = 0 < Coulomb field ¢

Sbo = §/un(—q) (¢°g" — ¢"q") Au(q)

Sb,3 :/k/] (%(Qim))ﬂ A (@ (k + q)p(k)

Sbf4_—//q1/qQA q1) Y(k + q1 + q2)p(k) <Jk =Lk)

1 = 1,2 & Vector potential A
(Coulomb gauge)
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* Up to gauge-fixing, the U(1) gauge symmetry of this model is expressed, in terms of
the effective action I, as

ol _ ol ol
“’“MN(q)“/JW‘Q) sok) S0k (“‘”]‘0

— infinite hierarchy of exact relations between renormalized correlation functions,
e.g.

Bare charge

B /

g" x = —e (G71(k) - G (k — @)

RN/

Renormalized
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* Complication: cutoff functions break gauge symmetry — modified Ward-Takahashi
identities [16] (mMWTIs), e.g.

Special
propagator
B 5
g* x =—e (G71(k) - G ' (k- @) + -
U F—q T
\ I J \ I J
Standard Ward identity 1-loop modification

* Harder to solve due to 1-loop structure, but possible.

[16] H. Gies, in “Renormalization Group and Effective Field Theory Approaches to Many-Body Systems”, Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012)
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e Our model: our Ansatz for the effective action has

w2 1

Gl k) = N A — Aw(K] = Fp)

with quasiparticle weight qu — 1/Aw and Fermi velocity v = Ak/Aw
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1

i) o) —
GA( ,Q) BAQ(QZ -+ A2) -+ BAq|q|2

with speed ¢* = Baq/Baa

1

N | §U —
)

N

0 q) = —
Collha) =~ 5 (P T A2/42)

q'q’

al?

)

Gauge-field masses!
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e The mWTIs for our model:

e ega N
M; = 22k, ME = FAT)
m Ak 47 Ay \
2
(N kTF) Irrelevant = don’t need to tune

to criticality!
Scale set by kr and e, “large” Y

Here, N = kk—F , kyy = momentum UV cutoff. N
uv

is non-universal - common for theories of NFLs _

(UV-IR mixing) [17]. geami

[17] Mandal & Lee, PRB 92, 035141 (2015)
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Complicated functions

9o = eAu + 93 f3(-) —gafa(.)  ga=eAi+gifi(.) — gafa(-.)

\/

Standard QED WTI
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Solution-method

* Flow equations give the derivatives of Ma, My, ga, 96, Aw, Ak, Baq, Baq
and quq.

* The mWTIs constrain Ma, My, ga and gg.

 Standard approach [16]: solve flow equations for independent variables A, Ak,
Baq,Baq and By, then fix Ma, My, ga and g4 using the mWTIs.

[16] H. Gies, in “Renormalization Group and Effective Field Theory Approaches to Many-Body Systems”, Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012)
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* This sums a larger class of diagrams [16,18] than using the flow-equations for
Ma, M¢, ga and gy, and ensures we stay in the gauge-invariant subspace at
all stages.

A3
A Unconstrained
. flow

mWTI- surface

[16] Gies, in “Renormalization Group and Effective Field Theory Approaches to Many-Body Systems”, Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012)
[18] Gies, Jaeckel & Wetterich, PRD 69, 105008 (2004)
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4. RG Fixed point

e Change variables to more convenient couplings [13,14]. Nine couplings:

Mi B Ne? _
OA = BaoA? A = \/87TBAQA Also: A,
5 ME.AIZ( . Ne2
"7 B A2 o=\ 5Bk
g2 = Nga v Axkuyv
AT 8mA BaoA AuA
R e (=3)
¢ 8T A2 Byq\ AL Sk v

* Y, ¢a and &y are defined in order to remove non-universal dependence of the flow
equations/mWTIs on kyy and e (dimensionful in 2-D).

[13] Maier & Strack, PRB 93, 165114 (2016) [14] Trott & Hooley, PRB 98, 201113(R) (2018)
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Sa — Mi 12 _ Ngi
* In terms of these variables, the mWTls are s _ MgA o o, Ngg

* T BogA2A2 T T 8nA2B oA

0A = 29p&A 0y = 8g3Y &y

ng:fAllJr;I( 2f — gk fz)] g%:£¢[1+%( 2f3 — g3 f4)}

Complicated functions

N.B. the g(’l) - identity originally contained extra o< 1/N terms (due to the frequency-cutoff) that
drove gc’p and 84 negative. We’ve dropped these in the expectation that they are unphysical,
and would be cancelled in a more sophisticated treatment.
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Unconstrained Constrained
(not enforcing mWTls) (enforcing mWTIs) 2
| | o = BaoA?
12 Ngi

IA = SWAﬁBAQA

N

™\ QCP attractive in
ga and 6,

1/3 L
/0 12

Oa Fgrrr)i— Sa
Liquid

li

Need to tune §, to reach criticality

e Can’t break gauge symmetry (need higher-form symmetries to understand ordering) —
mWTIs correctly force 6 to be irrelevant about the fixed point.
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* Most of the fixed-point values for the couplings are not changed

. Nw/k = —A\ O 1Og-/ﬁlc.u/k
much by symmetry-constraints:

{=c/v
Unconstrained Constrained

—1 02622%8Y (2 —1 04678 Lo (2

o =75 =% N N Mo =5 7% N N
——002410iN+0 l = O467lOgN 0 1

e AV L AV
*_0.314+0 log N *_0.857+0 log N

¢ = N N2 ¢ = N N2

Note for experts: neglected the feedback of fermion anomalous dimensions on the
RHS of flow equations — corrections should be small.
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Constrained

Unconstrained
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* However, there are some more noticeable differences:

ga , constrained

1.415E —
log N 1 aof e
ga =V2—0.337 Of, + 0 (ﬁ) for the i
. . . . 1.400F /‘
uncons’Fralned case, but is identically V2 for the ol gk , unconstrained
constrained. 1.390}
1.385; ‘0"
s s s e 7 108N
. . log N . .
e Also, &4 — o in the unconstrained case, but = V2 + O ( ) in the constrained.
= B Ne?
AQ ™
16mA Ne?

I

SWBAQA
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N —»
* Finally: 4 — 12 and 4 for unconstrained/constrained, respectively.

da , unconstrained

* 5541 = 1/12 almost under perturbative control?

= log N

da , constrained

6

= log N
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* How does this compare to past work?

Za X(w, kp)

This work 2 ~ ol Mo
Hertz-Millis-type [19,20] 3 ~ w2/3
H-M-type, >3-loop [9] > 3 ~ w>2/3

[19] Polchinski, Nucl. Phys. B 422, 617 (1994) [20] Kim, Furusaki, Wen & Lee, PRB 50, 17917 (1994)
[9] Holder & Metzner, PRB 92, 041112(R) (2015)

N , constrained
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Possible implications for predictive modelling of NFLs

e Apparent that gauge-symmetry constraints don’t change the properties of our model a

lot. However, there are some changes, so this acts as a proof-of-principle for the
method.

e Can we envisage a model in which there is a bigger difference?

= The fact that gj ~ /2 in both cases seems to be a bit of an “accident”, arising due
to O\Baq — 0 atcriticality.

A more sophisticated treatment, with a 4-boson vertex, might fix this.

= More speculative: generalize the gauge group to SU(N)? — “richer” mWTIs.
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= Applying our type of analysis (fRG + symmetry-constraints) may also work better

for theories with emergent (global) symmetries, where the symmetry group is
much larger/non-compact (e.g. LU(1)).

Indeed, there is an exact solution of the Tomonaga-Luttinger model by fRG that uses

the emergent U(1) X U(1) symmetry of the Luttinger liquid! [21] (highly
recommend!)

[21] Schiitz, Bartosch, Kopietz, PRB 72, 035107 (2005)
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Summary

Much modelling of non-Fermi liquids suffers from uncontrolled approximations,
which limits predictive power.

Partial solution: utilize exact constraints, such as those provided by (gauge)
symmetries, to constrain modelling.

Simplest example: U(1) gauge field interacting with circular Fermi surface.
Challenge: reproduce Landau damping while preserving the symmetry.

The functional renormalization group with a soft fermionic frequency cutoff
nonperturbatively produces flow equations and lets Landau damping develop
smoothly.

Gauge symmetry is enforced by modified Ward-Takahashi identities.

The model has an NFL fixed point, with z, = 2 andn, = 1/2. The anomalous
dimensions and couplings are somewhat affected by the symmetry-constraints.
Gauge symmetry also makes the boson mass irrelevant — conventional ordering
forbidden.
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 Single-scale propagators for flow equations:

W\/ = 0RG,(Q, q)
Q:»— = 086G (w0, k) |

» “Special” propagator for mWTIs:

—1 _
- of —zaARl om - R=(68)7 -~ 6ol

—}— = (Rf(k +q) — Rf(k)) Ge(k)Ge(k +q) (withk = (w,K), etc.)

I”

(the boson “special” propagator plays no role for an Abelian gauge group)
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E2

 Why don’t the bosonic “special” propagators appear in the mWTIs? Difficult to
explain in full, but roughly:

Regulators appear in the effective action through fl/j R Y and fAu R;jv A, .
Under an infinitesimal gauge transformation, these change as

%(ftﬁwa):i]tﬁ[a,Rf]w

1
S ( f A, R)Y AV) . J (0,a R," A, + Ay Ry 0,a)

The fermion-term is quadratic in 1. Changing ¥ — § /61, etc. generates a trace
— one-loop diagram.
The boson term is linear — no contribution.
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