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1. Introduction
• Biases and guesswork in modelling of non-Fermi liquids.

• Possible remedy: symmetry-constraints. The Reizer instability.

2. The renormalization group for NFLs
• Brief introduction to the renormalization group.

• Functional RG: how to handle Landau-damping consistently.

3. Symmetries in the functional renormalization group
• (Modified) Ward-Takahashi identities.

• Our effective action, and constraints on the RG flow.

4. RG Fixed Point
• Unconstrained vs constrained flow.

5. Discussion and summary
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1. Introduction

1. Introduction

• Developing consistent theories of non-Fermi liquids (NFLs) in two spatial dimensions 
remains a key challenge to condensed matter physics.

▪ Hertz-Millis theory is useful for some universality classes in 2-D, but fails in many 
important cases [1,2]. 

▪ Various other approaches exist (Yukawa-SYK [3], QMC [4], etc) but only give insight 
into certain classes of problems.

• Long-term goal: systematic understanding of the low-energy theory of these important 
cases.

[3] Patel, Guo, Esterlis & Sachdev, Science 381, 790 (2023)   [4] Xu, Sun, Schattner, Berg & Meng, PRX 7, 031058 (2017) 
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51. Introduction

▪ Strong interactions/correlations in 2-D → failure of “usual” methods (Hubbard-
Stratonovich transformation [1,2], 1/𝑁-expansion [5]).

• Why is it so hard?

▪ Breakdown of quasiparticle picture → little known about form of low-energy 
effective theory, or what the fermions do at criticality.

𝑛𝐤
2

𝑘𝐹

|𝐤|

Fermi gas

Landau quasiparticles

Hybrid excitations?

Increasing 
interactions/
correlations

[1] Abanov & Chubukov, PRL 93, 255702 (2004)   [2] Thier & Metzner, PRB 84, 155133 (2011)   
[5] Lee, PRB 80, 165102 (2009)



61. Introduction

• As a result, modelling procedures often include biases and uncontrolled approximations 
(e.g. Hertz-Millis theory assumes Fermi-liquid form for fermion propagator [6], holography 
assumes AdS/CFT correspondence and postulates effective field theory [7], etc).

    → loss of predictive power.

• Partial remedy: constrain modelling using exact (nonperturbative) identities that survive 
renormalization, e.g. constraints from ‘t Hooft anomalies and (gauge) symmetries.

(also c.f. Zhengyan Shi’s talk on Tuesday)

[6] Hertz, PRB 14, 1165 (1976)   [7] Sachdev, J. Stat. Mech. (2010) P11022



• Simplest example: U 1  gauge field interacting with circular Fermi surface. Could be 
electromagnetic field, or emergent gauge field, as in spin-liquids.

71. Introduction

• Gauge symmetries are implemented through exact relations between correlation 
functions, called Ward-Takahashi identities

    → good for constraining modelling-procedures/Ansatzes.

M. Vojta, Racah Institute of Physics 
colloquium, 16/11/2020



81. Introduction

• Previous approaches have largely been perturbative, and not paid close attention to 
symmetry-constraints [9,10]

    → use functional renormalization group augmented by Ward-Takahashi identities.

• Well-known that the magnetic vector potential 𝐀 is unscreened by the particle-hole 
continuum → long-range, singular interactions between electrons → destabilizes the Fermi 
liquid at (very) low energies (“Reizer instability” [8]). 

[8] Reizer, PRB 40, 11571 (1989)   [9] Holder & Metzner, PRB 92, 041112(R) (2015) 
[10] Mandal, PRR 2, 043277 (2020)



91. Introduction

• Main obstacle/ challenge: reproduce Landau-damping while preserving gauge 
symmetry. 

𝜋

𝐪
 

Bosonic 
fluctuations

𝑣𝐹
Decay-time 𝜏 ∼

𝜋

𝑣𝐹|𝐪|

→ Inverse propagator changes from 

Ω2 + 𝑐2|𝐪|2 → Ω2 + 𝑐2|𝐪|2 + 𝐶
|Ω|

𝑣𝐹|𝐪|
 ,

so  Ω ∼ 𝐪 3 , 

or more generally

Ω ∼ 𝐪 𝑧𝑏, 𝑧𝑏 > 1

• Turns out to be difficult!



101. Introduction

Project goals

2. Include Landau-damping in a consistent way.

1. Non-perturbatively study the Reizer instability, correctly taking account of 
gauge symmetry.

3. Assess the extent to which enforcing Ward-Takahashi identities changes the 
properties of the low-energy theory.
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122. RG for NFLs

2. The renormalization group for NFLs

• The renormalization group (RG), as applied to condensed matter, is a tool for finding the 
effective, low-energy theory of a given lattice-model.

• There are many implementations. For translationally-invariant systems: momentum-
shell (Wilsonian) RG. Consider bosonic field 𝜙 𝐤 , with UV cutoff 𝑘𝑐:

𝑘𝑥

𝑘𝑦

𝑘𝑐

𝑘𝑐/𝜉, 
𝜉 > 1 

Lower energy, 𝜙<

High-energy modes, 𝜙> Partition function 𝒵 =

 𝒟𝜙< 𝒟𝜙>  𝑒−𝑆 𝜙<, 𝜙> ≡

 𝒟𝜙< 𝑒−𝑆′ 𝜙<

→ effective action 𝑆′ for 𝜙<



132. RG for NFLs

• Set 𝜉 = 1 + 𝑑𝑡 → differential change in coupling constants, 𝑑𝜆𝑖 → RG “flow equations”:

𝑑𝜆𝑖

𝑑𝑡
= 𝐹𝑖 𝜆1, 𝜆2, …

𝜆2, …

𝜆1

Phase 1

Phase 2

Critical 
Point

• Flows in 𝜆𝑖-space generate 
phase diagrams. 

Fixed points 𝑑𝜆𝑖

𝑑𝑡
= 0  are 

either stable (phase) or 
unstable (critical point). 



142. RG for NFLs

• Problems with “normal” RG as applied to NFLs:

a) Perturbative: conventional schemes (like “Shankar RG” [11]) compute 𝛽-functions 
up to a certain loop-order, i.e. rely on small couplings.

→ bad for NFLs occurring at 𝒪 1  couplings.

[11] Shankar, Rev. Mod. Phys. 66, 129 (1994)



b) Incompatible momentum-scalings: 
 Low-energy fermions live at 𝐤 = 𝑘𝐹, bosons at 𝐪 = 𝟎:

152. RG for NFLs

𝑘𝐹

Λmomentum

Fermi-
surface

Fermions Bosons

𝑘𝑥

𝑘𝑦

𝑞𝑥

𝑞𝑦

Λmomentum

Scale towards 
𝐤 = 𝑘𝐹

Scale towards 
𝐪 = 𝟎



162. RG for NFLs

c) Flawed description of Landau-damping:

Hertz-Millis-like theories: integrate out the particle-hole bubble to generate Landau-
damping: 

Ω, 𝐪

=  𝐶
Ω

𝐪
+ ⋯

Bad, as low-energy degrees of freedom are integrated out too early, giving non-
local action. 

Wilsonian RG with bosons & fermions: action is local at all scales, but no Landau-
damping! (𝑧𝑏 = 1 throughout [12])

[12] Fitzpatrick, Kachru, Kaplan & Raghu, PRB 88, 125116 (2013)

Δ 𝐺𝑏
−1

1−loop
Ω, 𝐪 =



172. RG for NFLs

• Functional RG (fRG) is well suited to NFLs.

• Here, flow is parametrized by scale Λ, with Λ → 0 being the low-energy limit. We use 
cutoff-functions to regulate IR divergences, e.g. electron propagator: 

, e.g. :

Low energy-
modes cut off

𝜒 =
𝜔2

𝜔2 + Λ2

𝜒 = Θ 𝜔 − Λ  (“hard”)

Functional Renormalization Group



182. RG for NFLs

• This gives scale-dependence to the generating functionals

→ flow-equation for effective action → 1-loop-exact flows for correlation functions, 
e.g.

  𝜕

𝜕Λ

(Renormalized) Boson 
Green’s function

Fermion Green’s function
Coupling



192. RG for NFLs

• Our approach [13,14]:  𝜒 Λ, 𝜔, 𝐤 =
𝜔2

𝜔2+Λ2  for fermion propagator (+ some simple 

cutoff function for bosons). Benefits:

a)  𝚲 = frequency cutoff: doesn’t suppress small-momentum particle-hole 
excitations [15]. Also resolves the problem that low-energy fermions & bosons 
live at different points in momentum space: they both live at zero frequency.

[13] Maier & Strack, PRB 93, 165114 (2016)   [14] Trott & Hooley, PRB 98, 201113(R) (2018)   [15] Honerkamp & Salmhofer, PRB 64, 184516 (2001)



202. RG for NFLs

b) “Soft” cutoff-function: “sees” low-energy degrees of freedom early in flow 
but suppresses 𝜔 < Λ → Landau-damping develops gradually during flow.

Decreasing 
Λ

𝜒



212. RG for NFLs

• How do we find 𝑧𝑏/𝑓? In the scaling-limit, convert frequencies 𝜔, Ω → Λ, momenta 
𝐤 − 𝑘𝐹 → Λ1/𝑧𝑓 , 𝐪 → Λ1/𝑧𝑏. 

    E.g. fully renormalized fermion propagator: 

At criticality, on-shell:

Similar for 𝑧𝑏.

(                                 )
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233. Symmetries in fRG

3. Symmetries in the fRG

• In the absence of scale-dependence, (gauge) symmetries are implemented in field 
theory through Ward-Takahashi identities (WTIs). These are equivalent to invariance of 
the effective action under gauge-transformation.

• Example: Euclidean action for Fermi-surface coupled to U 1  gauge field:

𝑆 = 𝑆𝑓,0 + 𝑆𝑏,0 + 𝑆𝑏𝑓,3 + 𝑆𝑏𝑓,4 , with

𝜇 = 0  Coulomb field 𝜙

𝜇 = 1,2  Vector potential 𝐀

න
𝑘

 = න
𝜔,𝐤

 

(Coulomb gauge)



243. Symmetries in fRG

• Up to gauge-fixing, the U 1  gauge symmetry of this model is expressed, in terms of 
the effective action Γ, as

𝑞𝜇 ×

𝑞

𝜇
= −𝑒 𝐺𝑓

−1 𝑘 − 𝐺𝑓
−1 𝑘 − 𝑞  

𝑘

Bare charge

→ infinite hierarchy of exact relations between renormalized correlation functions, 
e.g.

Renormalized



253. Symmetries in fRG

• Complication: cutoff functions break gauge symmetry → modified Ward-Takahashi 
identities [16] (mWTIs), e.g.

𝑘𝑘 − 𝑞

1-loop modification

𝑞𝜇 ×

𝑞

𝜇
= −𝑒 𝐺𝑓

−1 𝑘 − 𝐺𝑓
−1 𝑘 − 𝑞  +

𝑘

Standard Ward identity

Special 
propagator

• Harder to solve due to 1-loop structure, but possible.

[16] H. Gies, in “Renormalization Group and Effective Field Theory Approaches to Many-Body Systems”, Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012) 



263. Symmetries in fRG

• Our model: our Ansatz for the effective action has

with quasiparticle weight and Fermi velocity 

Fermion 
propagator



273. Symmetries in fRG

𝐀

with speed

Yukawa vertices = 𝑔𝐀

𝜙
= 𝑔𝜙

Gauge-field masses!

𝐀-field 
propagator

𝜙-field 
propagator

Drop 4-point vertices



(          )

283. Symmetries in fRG

• The mWTIs for our model:

Irrelevant → don’t need to tune 
to criticality!  

Masses:

Scale set by 𝑘𝐹 and 𝑒, “large”

Here, 𝑁 =
𝑘𝐹

𝑘𝑈𝑉
 , 𝑘𝑈𝑉 = momentum UV cutoff. 𝑁 

is non-universal → common for theories of NFLs 
(UV-IR mixing) [17].

𝑘𝐹

𝑘𝑈𝑉

Fermi 
surface

Linearize dispersion 
here

[17] Mandal & Lee, PRB 92, 035141 (2015)



293. Symmetries in fRG

Standard QED WTI

Complicated functions

Yukawa 
Couplings:



• The mWTIs constrain   and      .

• Flow equations give the derivatives of                                                                       
and          .

303. Symmetries in fRG

Solution-method

• Standard approach [16]: solve flow equations for independent variables 
and , then fix and using the mWTIs.

[16] H. Gies, in “Renormalization Group and Effective Field Theory Approaches to Many-Body Systems”, Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012) 



• This sums a larger class of diagrams [16,18] than using the flow-equations for 
and      , and ensures we stay in the gauge-invariant subspace at 

all stages.

313. Symmetries in fRG

ΓΛ=Λ0

ΓΛ=0

𝜆1

𝜆2

𝜆3

mWTI- surface

Unconstrained 
flow

[16] Gies, in “Renormalization Group and Effective Field Theory Approaches to Many-Body Systems”, Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012)   
[18] Gies, Jaeckel & Wetterich, PRD 69, 105008 (2004) 
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334. Fixed point

4. RG Fixed point

• Change variables to more convenient couplings [13,14]. Nine couplings:

Also:

=
𝑐

𝑣

• 𝑌, 𝜉𝐀 and 𝜉𝜙 are defined in order to remove non-universal dependence of the flow 
equations/mWTIs on 𝑘𝑈𝑉 and 𝑒 (dimensionful in 2-D). 

[13] Maier & Strack, PRB 93, 165114 (2016)   [14] Trott & Hooley, PRB 98, 201113(R) (2018)

Recall:

𝑁 =
𝑘𝐹

𝑘𝑈𝑉
 



344. Fixed point

• In terms of these variables, the mWTIs are

Complicated functions

Recall:

N.B. the 𝑔𝜙
′  - identity originally contained extra ∝ 1/𝑁 terms (due to the frequency-cutoff) that 

drove 𝑔𝜙
′  and 𝛿𝜙 negative. We’ve dropped these in the expectation that they are unphysical, 

and would be cancelled in a more sophisticated treatment.



354. Fixed point

Unconstrained

(not enforcing mWTIs)

𝛿𝐀

𝑔𝐀
′

120

2

1/3

QCP

Ordered 
Phase

Fermi-
Liquid

Need to tune 𝛿𝐀 to reach criticality

• Can’t break gauge symmetry (need higher-form symmetries to understand ordering) → 
mWTIs correctly force 𝛿𝐀 to be irrelevant about the fixed point.

Constrained

(enforcing mWTIs)

QCP

𝛿𝐀

𝑔𝐀
′

3.491.3

2

0.9 QCP attractive in 
𝑔𝐀

′  and 𝛿𝐀



364. Fixed point

• Most of the fixed-point values for the couplings are not changed 
much by symmetry-constraints:

𝜁∗ =
0.314

𝑁
+ 𝒪

log 𝑁

𝑁2
 𝜁∗ =

0.857

𝑁
+ 𝒪

log 𝑁

𝑁2

𝜂𝜔 =
1

2
− 0.262

log 𝑁

𝑁
+ 𝒪

1

𝑁

𝜂𝐤 = −0.024
log 𝑁

𝑁
+ 𝒪

1

𝑁

𝜂𝜔 =
1

2
− 0.467

log 𝑁

𝑁
+ 𝒪

1

𝑁

𝜂𝐤 = −0.467
log 𝑁

𝑁
+ 𝒪

1

𝑁

Unconstrained Constrained

Note for experts: neglected the feedback of fermion anomalous dimensions on the 
RHS of flow equations – corrections should be small.

𝜁 = 𝑐/𝑣



374. Fixed point

Constrained Unconstrained

𝜂𝜔

𝜂𝐤

𝜂

log 𝑁



384. Fixed point

• However, there are some more noticeable differences:

𝑔𝐀
′ = 2 − 0.337

log 𝑁

𝑁
+ 𝒪

1

𝑁
  for the 

unconstrained case, but is identically 2 for the 
constrained.

𝑔𝐀
′  , constrained

𝑔𝐀
′  , unconstrained

• Also, 𝜉𝐀 → ∞ in the unconstrained case, but → 2 + 𝒪
log 𝑁

𝑁
 in the constrained.

log 𝑁



394. Fixed point

• Finally: 𝛿𝐀  ⟶  12 and 4 for unconstrained/constrained, respectively.
𝑁 → ∞

𝛿𝐀 , constrained𝛿𝐀 , unconstrained

• 𝛿𝐀
−1 = 1/12 almost under perturbative control?

log 𝑁 log 𝑁



404. Fixed point

• How does this compare to past work?

𝑧𝐀 Σ 𝜔, 𝑘𝐹

This work 2 ∼ 𝜔1−𝜂𝜔

Hertz-Millis-type [19,20] 3 ∼ 𝜔2/3

H-M-type, >3-loop [9] > 3 ∼ 𝜔>2/3

[19] Polchinski, Nucl. Phys. B 422, 617 (1994)   [20] Kim, Furusaki, Wen & Lee, PRB 50, 17917 (1994)   
[9] Holder & Metzner, PRB 92, 041112(R) (2015)   

log 𝑁

𝜂𝜔 , constrained



41Outline

Outline

1. Introduction
• Biases and guesswork in modelling of non-Fermi liquids.

• Possible remedy: symmetry-constraints. The Reizer instability.

2. The renormalization group for NFLs
• Brief introduction to the renormalization group.

• Functional RG: how to handle Landau-damping consistently.

3. Symmetries in the functional renormalization group
• (Modified) Ward-Takahashi identities.

• Our effective action, and constraints on the RG flow.

4. RG Fixed Point
• Unconstrained vs constrained flow.

5. Discussion and summary



425. Conclusion

• Apparent that gauge-symmetry constraints don’t change the properties of our model a 
lot. However, there are some changes, so this acts as a proof-of-principle for the 
method.

• Can we envisage a model in which there is a bigger difference?

▪ The fact that 𝑔𝐀
′ ≈ 2 in both cases seems to be a bit of an “accident”, arising due 

to                         at criticality. 

   A more sophisticated treatment, with a 4-boson vertex, might fix this.

Possible implications for predictive modelling of NFLs

▪ More speculative: generalize the gauge group to SU 𝑁 ? → “richer” mWTIs.



435. Conclusion

▪ Applying our type of analysis (fRG + symmetry-constraints) may also work better 
for theories with emergent (global) symmetries, where the symmetry group is 
much larger/non-compact (e.g. LU 1 ).

Indeed, there is an exact solution of the Tomonaga-Luttinger model by fRG that uses 
the emergent U 1 × U 1  symmetry of the Luttinger liquid! [21] (highly 
recommend!) 

[21] Schütz, Bartosch, Kopietz, PRB 72, 035107 (2005)



445. Conclusion

Summary

• Much modelling of non-Fermi liquids suffers from uncontrolled approximations, 
which limits predictive power.

• Partial solution: utilize exact constraints, such as those provided by (gauge) 
symmetries, to constrain modelling.

• Simplest example: U 1  gauge field interacting with circular Fermi surface.

• Challenge: reproduce Landau damping while preserving the symmetry.

• The functional renormalization group with a soft fermionic frequency cutoff 
nonperturbatively produces flow equations and lets Landau damping develop 
smoothly.

• Gauge symmetry is enforced by modified Ward-Takahashi identities.

• The model has an NFL fixed point, with 𝑧𝐀 = 2 and 𝜂𝜔 ≈ 1/2. The anomalous 
dimensions and couplings are somewhat affected by the symmetry-constraints. 
Gauge symmetry also makes the boson mass irrelevant → conventional ordering 
forbidden.



E1Extra slide

• Single-scale propagators for flow equations:

 
 

= 𝜕Λ
𝑅𝐺𝑓 𝜔, 𝐤

= 𝜕Λ
𝑅𝐺𝑏 Ω, 𝐪

𝜕Λ
𝑅 = 

𝑖

𝜕Λ𝑅𝑖

𝜕

𝜕𝑅𝑖
 , 𝑅𝑖 = 𝐺0,𝑖

Λ −1
− 𝐺0,𝑖

−1

• “Special” propagator for mWTIs:

= 𝑅𝑓 𝑘 + 𝑞 − 𝑅𝑓 𝑘 𝐺𝑓 𝑘 𝐺𝑓 𝑘 + 𝑞      (with 𝑘 = 𝜔, 𝐤 , etc.)

(the boson “special” propagator plays no role for an Abelian gauge group)



E2Extra slide

• Why don’t the bosonic “special” propagators appear in the mWTIs? Difficult to 
explain in full, but roughly:

Regulators appear in the effective action through  ത𝜓 𝑅𝑓 𝜓 and  𝐴𝜇  𝑅𝑏
𝜇𝜈

 𝐴𝜈. 

Under an infinitesimal gauge transformation, these change as

𝛿𝛼 න ത𝜓 𝑅𝑓 𝜓 = 𝑖 න ത𝜓 𝛼, 𝑅𝑓 𝜓

𝛿𝛼 න𝐴𝜇  𝑅𝑏
𝜇𝜈

 𝐴𝜈 =
1

𝑒
න 𝜕𝜇𝛼 𝑅𝑏

𝜇𝜈
𝐴𝜈 + 𝐴𝜇 𝑅𝑏

𝜇𝜈
 𝜕𝜈𝛼

The fermion-term is quadratic in 𝜓. Changing 𝜓 → 𝛿/𝛿 ҧ𝜂 , etc. generates a trace 
→ one-loop diagram. 
The boson term is linear → no contribution.
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