Non-Fermi liquids induced by U(1) gauge field interactions: a functional renormalization group analysis

Thomas Sheerin*

HKU-UCAS Young Physicists Symposium

22nd August 2024

Engineering and Physical Sciences Research Council

*tps3@st-andrews.ac.uk

Centre for Doctoral Training in Quantum Materials

Acknowledgements

Bernd Braunecker (University of St Andrews) Chris Hooley (MPI-PKS Dresden)

Supervisors

Engineering and Physical Sciences Research Council 1

Outline

1. Introduction

- Biases and guesswork in modelling of non-Fermi liquids.
- Possible remedy: symmetry-constraints. The Reizer instability.
- 2. The renormalization group for NFLs
 - Brief introduction to the renormalization group.
 - Functional RG: how to handle Landau-damping consistently.
- 3. Symmetries in the functional renormalization group
 - (Modified) Ward-Takahashi identities.
 - Our effective action, and constraints on the RG flow.
- 4. RG Fixed Point
 - Unconstrained vs constrained flow.
- 5. Discussion and summary

Outline

1. Introduction

- Biases and guesswork in modelling of non-Fermi liquids.
- Possible remedy: symmetry-constraints. The Reizer instability.
- 2. The renormalization group for NFLs
 - Brief introduction to the renormalization group.
 - Functional RG: how to handle Landau-damping consistently.
- 3. Symmetries in the functional renormalization group
 - (Modified) Ward-Takahashi identities.
 - Our effective action, and constraints on the RG flow.
- 4. RG Fixed Point
 - Unconstrained vs constrained flow.
- 5. Discussion and summary

4

1. Introduction

- Developing consistent theories of non-Fermi liquids (NFLs) in two spatial dimensions remains a key challenge to condensed matter physics.
 - Hertz-Millis theory is useful for some universality classes in 2-D, but fails in many important cases [1,2].
 - Various other approaches exist (Yukawa-SYK [3], QMC [4], etc) but only give insight into certain classes of problems.
- Long-term goal: systematic understanding of the low-energy theory of these important cases.

[1] Abanov & Chubukov, PRL 93, 255702 (2004)
[2] Thier & Metzner, PRB 84, 155133 (2011)
[3] Patel, Guo, Esterlis & Sachdev, Science 381, 790 (2023)
[4] Xu, Sun, Schattner, Berg & Meng, PRX 7, 031058 (2017)

- Why is it so hard?
 - Breakdown of quasiparticle picture → little known about form of low-energy effective theory, or what the fermions do at criticality.

 Strong interactions/correlations in 2-D → failure of "usual" methods (Hubbard-Stratonovich transformation [1,2], 1/N-expansion [5]).

^[1] Abanov & Chubukov, PRL 93, 255702 (2004)
[2] Thier & Metzner, PRB 84, 155133 (2011)
[5] Lee, PRB 80, 165102 (2009)

- As a result, modelling procedures often include biases and uncontrolled approximations (e.g. Hertz-Millis theory assumes Fermi-liquid form for fermion propagator [6], holography assumes AdS/CFT correspondence and postulates effective field theory [7], etc).
 - \rightarrow loss of predictive power.

• Partial remedy: constrain modelling using exact (nonperturbative) identities that survive renormalization, e.g. constraints from 't Hooft anomalies and (gauge) symmetries.

(also c.f. Zhengyan Shi's talk on Tuesday)

^[6] Hertz, PRB **14**, 1165 (1976) [7] Sachdev, J. Stat. Mech. (2010) P11022

- Gauge symmetries are implemented through exact relations between correlation functions, called Ward-Takahashi identities
 - \rightarrow good for constraining modelling-procedures/Ansatzes.
- Simplest example: U(1) gauge field interacting with circular Fermi surface. Could be electromagnetic field, or emergent gauge field, as in spin-liquids.

M. Vojta, Racah Institute of Physics colloquium, 16/11/2020 Well-known that the magnetic vector potential A is unscreened by the particle-hole continuum → long-range, singular interactions between electrons → destabilizes the Fermi liquid at (very) low energies ("Reizer instability" [8]).

- Previous approaches have largely been perturbative, and not paid close attention to symmetry-constraints [9,10]
 - \rightarrow use functional renormalization group augmented by Ward-Takahashi identities.

^[8] Reizer, PRB **40**, 11571 (1989) [9] Holder & Metzner, PRB **92**, 041112(R) (2015) [10] Mandal, PRR **2**, 043277 (2020)

• Main obstacle/ challenge: reproduce Landau-damping while preserving gauge symmetry.

Decay-time
$$\tau \sim \frac{\pi}{v_F|\mathbf{q}|}$$

 \rightarrow Inverse propagator changes from
 $\Omega^2 + c^2 |\mathbf{q}|^2 \rightarrow \Omega^2 + c^2 |\mathbf{q}|^2 + C \frac{|\Omega|}{v_F|\mathbf{q}|},$
so $\Omega \sim |\mathbf{q}|^3$,

or more generally $\Omega \sim |\mathbf{q}|^{z_b}, z_b > 1$

• Turns out to be difficult!

Project goals

- 1. Non-perturbatively study the Reizer instability, correctly taking account of gauge symmetry.
- 2. Include Landau-damping in a consistent way.
- 3. Assess the extent to which enforcing Ward-Takahashi identities changes the properties of the low-energy theory.

Outline

1. Introduction

- Biases and guesswork in modelling of non-Fermi liquids.
- Possible remedy: symmetry-constraints. The Reizer instability.
- 2. The renormalization group for NFLs
 - Brief introduction to the renormalization group.
 - Functional RG: how to handle Landau-damping consistently.
- 3. Symmetries in the functional renormalization group
 - (Modified) Ward-Takahashi identities.
 - Our effective action, and constraints on the RG flow.
- 4. RG Fixed Point
 - Unconstrained vs constrained flow.
- 5. Discussion and summary

2. The renormalization group for NFLs

- The renormalization group (RG), as applied to condensed matter, is a tool for finding the effective, low-energy theory of a given lattice-model.
- There are many implementations. For translationally-invariant systems: momentumshell (Wilsonian) RG. Consider bosonic field $\phi(\mathbf{k})$, with UV cutoff k_c :

Partition function $\mathcal{Z} = \int \mathcal{D}\phi_{<} \mathcal{D}\phi_{>} e^{-S[\phi_{<}, \phi_{>}]} \equiv \int \mathcal{D}\phi_{<} e^{-S'[\phi_{<}]}$

 \rightarrow effective action S' for $\phi_{<}$

• Set $\xi = 1 + dt \rightarrow$ differential change in coupling constants, $d\lambda_i \rightarrow RG$ "flow equations":

$$\frac{d\lambda_i}{dt} = F_i(\lambda_1, \lambda_2, \dots)$$

• Flows in λ_i -space generate phase diagrams.

Fixed points $\left(\frac{d\lambda_i}{dt} = 0\right)$ are either stable (phase) or unstable (critical point).

- Problems with "normal" RG as applied to NFLs:
 - a) Perturbative: conventional schemes (like "Shankar RG" [11]) compute β -functions up to a certain loop-order, i.e. rely on small couplings.

 \rightarrow bad for NFLs occurring at $\mathcal{O}(1)$ couplings.

^[11] Shankar, Rev. Mod. Phys. 66, 129 (1994)

b) Incompatible momentum-scalings:

Low-energy fermions live at $|\mathbf{k}| = k_F$, bosons at $\mathbf{q} = \mathbf{0}$:

c) Flawed description of Landau-damping:

<u>Hertz-Millis-like theories</u>: integrate out the particle-hole bubble to generate Landaudamping:

$$\Delta (G_b^{-1})_{1-\text{loop}}(\Omega, \mathbf{q}) = \mathbf{Q} + \cdots$$

Bad, as low-energy degrees of freedom are integrated out too early, giving nonlocal action.

<u>Wilsonian RG with bosons & fermions</u>: action is local at all scales, but no Landaudamping! ($z_b = 1$ throughout [12])

^[12] Fitzpatrick, Kachru, Kaplan & Raghu, PRB 88, 125116 (2013)

Functional Renormalization Group

- Functional RG (fRG) is well suited to NFLs.
- Here, flow is parametrized by scale Λ , with $\Lambda \rightarrow 0$ being the low-energy limit. We use cutoff-functions to regulate IR divergences, e.g. electron propagator:

• This gives scale-dependence to the generating functionals

 \rightarrow flow-equation for effective action \rightarrow 1-loop-exact flows for correlation functions, e.g.

- Our approach [13,14]: $\chi(\Lambda, \omega, \mathbf{k}) = \frac{\omega^2}{\omega^2 + \Lambda^2}$ for fermion propagator (+ some simple cutoff function for bosons). Benefits:
 - a) $\Lambda =$ frequency cutoff: doesn't suppress small-momentum particle-hole excitations [15]. Also resolves the problem that low-energy fermions & bosons live at different points in momentum space: they both live at zero frequency.

^[13] Maier & Strack, PRB **93**, 165114 (2016) [14] Trott & Hooley, PRB **98**, 201113(R) (2018) [15] Honerkamp & Salmhofer, PRB **64**, 184516 (2001)

b) "Soft" cutoff-function: "sees" low-energy degrees of freedom early in flow but suppresses $|\omega| < \Lambda \rightarrow$ Landau-damping develops gradually during flow.

• How do we find $z_{b/f}$? In the scaling-limit, convert frequencies $\omega, \Omega \to \Lambda$, momenta $|\mathbf{k}| - k_F \to \Lambda^{1/z_f}$, $|\mathbf{q}| \to \Lambda^{1/z_b}$.

E.g. fully renormalized fermion propagator:

 $\frac{\omega^2}{\omega^2 + \Lambda^2} \frac{1}{i\mathcal{A}_{\omega}\omega - \mathcal{A}_{\mathbf{k}}(|\mathbf{k}| - k_F)}$ $\Lambda\Lambda^{-\eta_{\omega}} \sim \Lambda^{-\eta_{\mathbf{k}}} \Lambda^{1/z_f} \qquad (\eta_{\omega/\mathbf{k}} = -\Lambda \partial_{\Lambda} \log \mathcal{A}_{\omega/\mathbf{k}})$ $\Leftrightarrow z_f = \frac{1}{1 - \eta_{\omega} + \eta_{\mathbf{k}}}$

At criticality, on-shell:

Similar for z_b .

Outline

1. Introduction

- Biases and guesswork in modelling of non-Fermi liquids.
- Possible remedy: symmetry-constraints. The Reizer instability.
- 2. The renormalization group for NFLs
 - Brief introduction to the renormalization group.
 - Functional RG: how to handle Landau-damping consistently.
- 3. Symmetries in the functional renormalization group
 - (Modified) Ward-Takahashi identities.
 - Our effective action, and constraints on the RG flow.
- 4. RG Fixed Point
 - Unconstrained vs constrained flow.
- 5. Discussion and summary

3. Symmetries in the fRG

- In the absence of scale-dependence, (gauge) symmetries are implemented in field theory through Ward-Takahashi identities (WTIs). These are equivalent to invariance of the effective action under gauge-transformation.
- Example: Euclidean action for Fermi-surface coupled to U(1) gauge field:

 $S = S_{f,0} + S_{b,0} + S_{bf,3} + S_{bf,4}$, with

$$S_{f,0} = \int_{k} \bar{\psi}(k) \left(-i\omega + v_{0}(|\mathbf{k}| - k_{F})\right) \psi(k)$$

$$S_{b,0} = \frac{1}{2} \int_{q} A_{\mu}(-q) \left(q^{2}g^{\mu\nu} - q^{\mu}q^{\nu}\right) A_{\nu}(q)$$

$$\mu = 0 \leftrightarrow \text{Coulomb field } \phi$$

$$\mu = 1,2 \leftrightarrow \text{Vector potential } \mathbf{A}$$

$$S_{bf,3} = \int_{k} \int_{q} \left(\frac{e}{2m}(2\mathbf{k} + \mathbf{q})\right)^{\mu} A_{\mu}(q) \bar{\psi}(k + q) \psi(k)$$

$$(\text{Coulomb gauge})$$

$$e^{2} = \int_{k} \int_{q} \int_{q}$$

$$S_{bf,4} = \frac{e^2}{2m} \int_k \int_{q_1} \int_{q_2} \mathbf{A}(q_1) \cdot \mathbf{A}(q_2) \bar{\psi}(k+q_1+q_2) \psi(k)$$

 $\left(\int_{U} = \int_{U}\right)$

• Up to gauge-fixing, the U(1) gauge symmetry of this model is expressed, in terms of the effective action Γ , as

$$q_{\mu}\frac{\delta\Gamma}{\delta A_{\mu}(-q)} + e\int_{k} \left[\bar{\psi}(k-q)\frac{\delta\Gamma}{\delta\bar{\psi}(k)} + \frac{\delta\Gamma}{\delta\psi(k)}\psi(k+q)\right] = 0$$

 \rightarrow infinite hierarchy of exact relations between <u>renormalized</u> correlation functions, e.g.

 Complication: cutoff functions break gauge symmetry → modified Ward-Takahashi identities [16] (mWTIs), e.g.
 Special

 $q^{\mu} \times \underbrace{q}_{\mu} = -e \left(G_{f}^{-1}(k) - G_{f}^{-1}(k-q) \right) + \underbrace{k-q}_{k-q} \times \underbrace{k-q}_{k-q}$ Standard Ward identity 1-loop modification

• Harder to solve due to 1-loop structure, but possible.

propagator

^[16] H. Gies, in "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012)

• Our model: our Ansatz for the effective action has

Fermion
propagator
$$G_f(\omega, \mathbf{k}) = \frac{\omega^2}{\omega^2 + \Lambda^2} \frac{1}{i\mathcal{A}_{\omega}\omega - \mathcal{A}_{\mathbf{k}}(|\mathbf{k}| - k_F)}$$

with quasiparticle weight $\mathcal{Z}_{qp}=1/\mathcal{A}_\omega$ and Fermi velocity $v=\mathcal{A}_{f k}/\mathcal{A}_\omega$

Yukawa vertices

$$\bigwedge^{\mathbf{A}} = g_{\mathbf{A}} \qquad \qquad \bigwedge^{\boldsymbol{\phi}} = g_{\boldsymbol{\phi}}$$

Drop 4-point vertices

• The mWTIs for our model:

Masses:

$$M_{\phi}^2 = rac{eg_{\phi}}{\pi \mathcal{A}_{\mathbf{k}}} k_F$$
($\sim k_{\mathrm{TF}}^2$)

Scale set by k_F and e, "large"

$$M_{\mathbf{A}}^{2} = \frac{eg_{\mathbf{A}}N}{4\pi\mathcal{A}_{\mathbf{k}}}\Lambda$$
Irrelevant \rightarrow don't need to tune to criticality!

Here, $N = \frac{k_F}{k_{UV}}$, k_{UV} = momentum UV cutoff. Nis non-universal \rightarrow common for theories of NFLs (UV-IR mixing) [17].

Solution-method

- Flow equations give the derivatives of $M_{\mathbf{A}}, M_{\phi}, g_{\mathbf{A}}, g_{\phi}, \mathcal{A}_{\omega}, \mathcal{A}_{\mathbf{k}}, \mathcal{B}_{\mathbf{A}\Omega}, \mathcal{B}_{\mathbf{A}\mathbf{q}}$ and $\mathcal{B}_{\phi\mathbf{q}}$.
- The mWTIs constrain $M_{\mathbf{A}}, M_{\phi}, g_{\mathbf{A}}$ and g_{ϕ} .
- Standard approach [16]: solve flow equations for independent variables $\mathcal{A}_{\omega}, \mathcal{A}_{\mathbf{k}}, \mathcal{B}_{\mathbf{A}\Omega}, \mathcal{B}_{\mathbf{A}\mathbf{q}}$ and $\mathcal{B}_{\phi\mathbf{q}}$, then fix $M_{\mathbf{A}}, M_{\phi}, g_{\mathbf{A}}$ and g_{ϕ} using the mWTIs.

^[16] H. Gies, in "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012)

• This sums a larger class of diagrams [16,18] than using the flow-equations for $M_{\bf A}, M_{\phi}, g_{\bf A}$ and g_{ϕ} , and ensures we stay in the gauge-invariant subspace at all stages.

^[16] Gies, in "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Chapter 6 (Springer-Verlag Berlin Heidelberg, 2012) [18] Gies, Jaeckel & Wetterich, PRD **69**, 105008 (2004)

Outline

1. Introduction

- Biases and guesswork in modelling of non-Fermi liquids.
- Possible remedy: symmetry-constraints. The Reizer instability.
- 2. The renormalization group for NFLs
 - Brief introduction to the renormalization group.
 - Functional RG: how to handle Landau-damping consistently.
- 3. Symmetries in the functional renormalization group
 - (Modified) Ward-Takahashi identities.
 - Our effective action, and constraints on the RG flow.
- 4. RG Fixed Point
 - Unconstrained vs constrained flow.
- 5. Discussion and summary

4. RG Fixed point

• Change variables to more convenient couplings [13,14]. Nine couplings:

$$\begin{split} \delta_{\mathbf{A}} &= \frac{M_{\mathbf{A}}^2}{\mathcal{B}_{\mathbf{A}\Omega}\Lambda^2} & \xi_{\mathbf{A}} = \sqrt{\frac{Ne^2}{8\pi \mathcal{B}_{\mathbf{A}\Omega}\Lambda}} & \text{Also: } \mathcal{A}_{\omega} \\ \delta_{\phi} &= \frac{M_{\phi}^2 \mathcal{A}_{\mathbf{k}}^2}{\mathcal{B}_{\phi \mathbf{q}} \mathcal{A}_{\omega}^2 \Lambda^2} & \xi_{\phi} = \sqrt{\frac{Ne^2}{8\pi \mathcal{B}_{\phi \mathbf{q}}\Lambda}} \\ g_{\mathbf{A}}^{\prime 2} &= \frac{Ng_{\mathbf{A}}^2}{8\pi \mathcal{A}_{\mathbf{k}}^2 \mathcal{B}_{\mathbf{A}\Omega}\Lambda} & Y = \frac{\mathcal{A}_{\mathbf{k}}k_{UV}}{\mathcal{A}_{\omega}\Lambda} \\ g_{\phi}^{\prime 2} &= \frac{Ng_{\phi}^2}{8\pi \mathcal{A}_{\omega}^2 \mathcal{B}_{\phi \mathbf{q}}\Lambda} & \zeta = \sqrt{\frac{\mathcal{B}_{\mathbf{A}\mathbf{q}}}{\mathcal{B}_{\mathbf{A}\Omega}}} \frac{\mathcal{A}_{\omega}}{\mathcal{A}_{\mathbf{k}}} \left(=\frac{c}{v}\right) \end{split}$$

• Y, ξ_A and ξ_{ϕ} are defined in order to remove non-universal dependence of the flow equations/mWTIs on k_{UV} and e (dimensionful in 2-D).

^[13] Maier & Strack, PRB 93, 165114 (2016) [14] Trott & Hooley, PRB 98, 201113(R) (2018)

• In terms of these variables, the mWTIs are

Recall:
$$\delta_{\mathbf{A}} = \frac{M_{\mathbf{A}}^2}{\mathcal{B}_{\mathbf{A}\Omega}\Lambda^2} \qquad g_{\mathbf{A}}'^2 = \frac{Ng_{\mathbf{A}}^2}{8\pi\mathcal{A}_{\mathbf{k}}^2\mathcal{B}_{\mathbf{A}\Omega}\Lambda}$$
$$\delta_{\phi} = \frac{M_{\phi}^2\mathcal{A}_{\mathbf{k}}^2}{\mathcal{B}_{\phi\mathbf{q}}\mathcal{A}_{\omega}^2\Lambda^2} \qquad g_{\phi}'^2 = \frac{Ng_{\phi}^2}{8\pi\mathcal{A}_{\omega}^2\mathcal{B}_{\phi\mathbf{q}}\Lambda}$$

$$\delta_{\mathbf{A}} = 2g'_{\mathbf{A}}\xi_{\mathbf{A}} \qquad \qquad \delta_{\phi} = 8g'_{\phi}Y\xi_{\phi}$$

N.B. the g'_{ϕ} - identity originally contained extra $\propto 1/N$ terms (due to the frequency-cutoff) that drove g'_{ϕ} and δ_{ϕ} negative. We've dropped these in the expectation that they are unphysical, and would be cancelled in a more sophisticated treatment.

• Can't break gauge symmetry (need higher-form symmetries to understand ordering) \rightarrow mWTIs correctly force δ_A to be irrelevant about the fixed point.

• Most of the fixed-point values for the couplings are not changed much by symmetry-constraints:

$$\eta_{\omega} = \frac{1}{2} - 0.262 \frac{\log N}{N} + \mathcal{O}\left(\frac{1}{N}\right)$$
$$\eta_{\mathbf{k}} = -0.024 \frac{\log N}{N} + \mathcal{O}\left(\frac{1}{N}\right)$$
$$\zeta^* = \frac{0.314}{N} + \mathcal{O}\left(\frac{\log N}{N^2}\right)$$

Ilnconstrained

$$\eta_{\omega} = \frac{1}{2} - 0.467 \frac{\log N}{N} + \mathcal{O}\left(\frac{1}{N}\right)$$

Constrained

$$\eta_{\mathbf{k}} = -0.467 \frac{\log N}{N} + \mathcal{O}\left(\frac{1}{N}\right)$$

$$\zeta^* = \frac{0.857}{N} + \mathcal{O}\left(\frac{\log N}{N^2}\right)$$

Note for experts: neglected the feedback of fermion anomalous dimensions on the RHS of flow equations – corrections should be small.

 $\eta_{\omega/\mathbf{k}} = -\Lambda \ \partial_{\Lambda} \log \mathcal{A}_{\omega/\mathbf{k}}$ $\zeta = c/v$

• However, there are some more noticeable differences:

$$g'_{\rm A} = \sqrt{2} - 0.337 \frac{\log N}{N} + O\left(\frac{1}{N}\right)$$
 for the unconstrained case, but is identically $\sqrt{2}$ for the constrained.

• Also, $\xi_A \to \infty$ in the unconstrained case, but $\to \sqrt{2} + O\left(\frac{\log N}{N}\right)$ in the constrained.

$$\Rightarrow \mathcal{B}_{\mathbf{A}\Omega} \sim \frac{Ne^2}{16\pi\Lambda}$$

Ċ	$\sqrt{Ne^2}$
$\zeta_{\mathbf{A}} =$	$\sqrt{8\pi \mathcal{B}_{\mathbf{A}\Omega}\Lambda}$

• Finally: $\delta_{\mathbf{A}} \xrightarrow{N \to \infty} 12$ and 4 for unconstrained/constrained, respectively.

• $\delta_{\mathbf{A}}^{-1} = 1/12$ almost under perturbative control?

• How does this compare to past work?

^[19] Polchinski, Nucl. Phys. B 422, 617 (1994) [20] Kim, Furusaki, Wen & Lee, PRB 50, 17917 (1994)
[9] Holder & Metzner, PRB 92, 041112(R) (2015)

Outline

1. Introduction

- Biases and guesswork in modelling of non-Fermi liquids.
- Possible remedy: symmetry-constraints. The Reizer instability.
- 2. The renormalization group for NFLs
 - Brief introduction to the renormalization group.
 - Functional RG: how to handle Landau-damping consistently.
- 3. Symmetries in the functional renormalization group
 - (Modified) Ward-Takahashi identities.
 - Our effective action, and constraints on the RG flow.
- 4. RG Fixed Point
 - Unconstrained vs constrained flow.

5. Discussion and summary

Possible implications for predictive modelling of NFLs

- Apparent that gauge-symmetry constraints don't change the properties of our model a lot. However, there are some changes, so this acts as a proof-of-principle for the method.
- Can we envisage a model in which there is a bigger difference?
 - The fact that $g'_{\mathbf{A}} \approx \sqrt{2}$ in both cases seems to be a bit of an "accident", arising due to $\partial_{\Lambda} \mathcal{B}_{\mathbf{Aq}} \to 0$ at criticality.

A more sophisticated treatment, with a 4-boson vertex, might fix this.

• More speculative: generalize the gauge group to SU(N)? \rightarrow "richer" mWTIs.

 Applying our type of analysis (fRG + symmetry-constraints) may also work better for theories with emergent (global) symmetries, where the symmetry group is much larger/non-compact (e.g. LU(1)).

Indeed, there is an exact solution of the Tomonaga-Luttinger model by fRG that uses the emergent $U(1) \times U(1)$ symmetry of the Luttinger liquid! [21] (highly recommend!)

[21] Schütz, Bartosch, Kopietz, PRB 72, 035107 (2005)

Summary

- Much modelling of non-Fermi liquids suffers from uncontrolled approximations, which limits predictive power.
- Partial solution: utilize exact constraints, such as those provided by (gauge) symmetries, to constrain modelling.
- Simplest example: U(1) gauge field interacting with circular Fermi surface.
- Challenge: reproduce Landau damping while preserving the symmetry.
- The functional renormalization group with a soft fermionic frequency cutoff nonperturbatively produces flow equations and lets Landau damping develop smoothly.
- Gauge symmetry is enforced by modified Ward-Takahashi identities.
- The model has an NFL fixed point, with $z_A = 2$ and $\eta_{\omega} \approx 1/2$. The anomalous dimensions and couplings are somewhat affected by the symmetry-constraints. Gauge symmetry also makes the boson mass irrelevant \rightarrow conventional ordering forbidden.

• Single-scale propagators for flow equations:

$$\left.\begin{array}{l} & \left.\begin{array}{l} & \left.\begin{array}{l} & \left.\begin{array}{l} & \left.\begin{array}{l} & \left.\end{array}\right)_{R}^{R}G_{b}(\Omega,\mathbf{q}) \\ \end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R}^{R} = \sum_{i}\partial_{\Lambda}R_{i} \frac{\partial}{\partial R_{i}} \\ \end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R} = \left.\begin{array}{l} & \left.\begin{array}{l} & \left.\end{array}\right)_{R}^{R} = \sum_{i}\partial_{\Lambda}R_{i} \frac{\partial}{\partial R_{i}} \\ \end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R} \\ & \left.\end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R} \\ & \left.\end{array}\right)_{R} \\ & \left.\end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R} \\ & \left.\end{array}\right)_{R} \\ & \left.\end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R} \\ & \left.\end{array}\right)_{R} \\ & \left.\end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R} \\ & \left.\begin{array}{l} & \left.\end{array}\right)_{R} \\ & \left.\end{array}\right)_{R$$

• "Special" propagator for mWTIs:

$$\blacksquare = \left(R_f(k+q) - R_f(k)\right)G_f(k)G_f(k+q) \quad \text{(with } k = (\omega, \mathbf{k}), \text{ etc.)}$$

(the boson "special" propagator plays no role for an Abelian gauge group)

• Why don't the bosonic "special" propagators appear in the mWTIs? Difficult to explain in full, but roughly:

Regulators appear in the effective action through $\int \bar{\psi} R_f \psi$ and $\int A_\mu R_b^{\mu\nu} A_\nu$. Under an infinitesimal gauge transformation, these change as

$$\delta_{\alpha} \left(\int \bar{\psi} R_{f} \psi \right) = i \int \bar{\psi} [\alpha, R_{f}] \psi$$
$$\delta_{\alpha} \left(\int A_{\mu} R_{b}^{\mu\nu} A_{\nu} \right) = \frac{1}{e} \int \left(\partial_{\mu} \alpha R_{b}^{\mu\nu} A_{\nu} + A_{\mu} R_{b}^{\mu\nu} \partial_{\nu} \alpha \right)$$

The fermion-term is quadratic in ψ . Changing $\psi \to \delta/\delta \bar{\eta}$, etc. generates a trace \to one-loop diagram.

The boson term is linear \rightarrow no contribution.